Dent Documentation
Release 0.1

Robert Spencer

Dec 07, 2019

Contents

1 Render Pipelines

1.1 Foreword e e e
1.2 OVeIVIEW o o e e e e e e e e e e e e e e e e e e
1.3 Pipelinesin Scenes oL e e e e e e e e e e e

2 Tutorial: A Shadertoy-like Program

2.1 StageO: Planning e

2.2 Stage 1: GettingaGame Running L e

2.3 Stage 2: Writinga Shader

2.4 Stage 3: Using the Shader e e

2.5 Stagethe last: Afterword oL e e e e
3 Shaders

4 Actions and Animations

5 Messaging
5.1 Default Messages« o oot e e e e e e
52 APL .«

6 Materials

6.1 Parameters of a Material L e e
6.2 Parsing Materials from Models
6.3 Parameters e
6.4 Overriding TEeXtUIES v v v v e i e
6.5 Debugging Materials L e e e e e e e
6.6 APL . . . e e
7 Textures
T.1 0 APL . o e e e e e
Python Module Index
Index

13

15

17
17
18

19
19
20
20
21
21
21

23
23

25

27

Dent Documentation, Release 0.1

Dent is a simple OpenGL 4 game engine written in Python. Dent has support for asset importing, shader management
and event handling, as well as a plug-and-play deferred rendering pipeline.

There is no editor for Dent projects (yet): everything is simply pure Python files (and assets etc.) as it is meant to be.

The best way to learn about it is by examples and tutorials.

Contents 1

https://www.github.com/rspencer01/model-viewer/

Dent Documentation, Release 0.1

2 Contents

CHAPTER 1

Render Pipelines

1.1 Foreword

Working with render pipelines can be complicated. As such it is the job of the engine to make that complication go
away. If you are not interested in the behind-the-scenes information about render pipelines, skip to the last section to
find out why you don’t need to know about them.

1.2 Overview

To display anything on the screen, it must go through a render pipeline. Dent affords a large degree of control over
this pipeline to the programmer, while simultaniously making “standard” pipelines quick to set up.

The two main render strategies are deferred rendering and forward rendering, and we will use these as examples,
although other, more complicated strategies are possible. This is not a complete guide. For a more complete story see
here.

Forward rendering is the simpler to think about and is probably better for starting out. In this model, geometry is
drawn directly to the screen.

https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342

Dent Documentation, Release 0.1

Shader 1

Shader 2

Shader 3

Note that each object is fully drawn one at a time. There may be different shaders for different objects (eg different
lighting effects for water or for glass), and multiple objects may be drawn by the same shader.

In deferred rendering, the output is post processed after everything has been drawn. Then a shader is applied to the
entire scene simultaniously.

Shader 1

—»

!}—» Shader 2 f—»

The buffers are diffuse, normal and position maps of the entire scene, and the first shaders are responsible for populat-
ing those maps.

F'

Lighting
Shader

A set of such buffers is a RenderStage and the whole pipeline is managed by a RenderPipeline object. A
pipeline has a number of stages, typically culminating in the screen buffer. When run, it will load each of the stages
in sequence and execute some drawing code for each.

Thus in our direct rendering above, we might have a render pipeline:

RenderPipeline (
[
RenderStage (render_func=display_function, final_stage=True)
]
)

While in the deferred rendering, we might have:

4 Chapter 1. Render Pipelines

Dent Documentation, Release 0.1

RenderPipeline (

[
RenderStage (render_func=display_function, aux_buffer=True),
RenderStage (render_func=lighting_function, final_stage=True)

All of the calls to glDraw* happen in the display_function and the lighting_function. However, these too will be
abstracted away by dent so that, for example, the lighting display function might just be:

def lighting_function():
lightingRectangle.display ()

where the lighting rectangle abstracts away the geometry and shader needed to do the per fragment lighting calcula-
tions.

Render pipelines are very simple (take a look at the source code) and as such, can be made to be very powerful. The
can have multiple stages for multiple lighting/postprocessing passes or render to textures to be used elsewhere in the
game.

1.3 Pipelines in Scenes

A Dent Scene has one render pipeline to render the scene to the display. To help set this up (although you are
welcome to do it manually), the standard scene comes default with a renderPipeline attribute set up as per the
first example above. The display function for this pipeline is the display function of the scene. Thus, sufficient
bootstrap code is:

class MainScene (Scene) :
def _ init_ (self):
super (MainScene, self).__init__ ()
Make objects here

def display(self, *xkwargs):
for object in self.objects:
object.display ()

For a deferred rendering scene, extend DeferredRenderScene. Again, the display function is display.

1.3. Pipelines in Scenes 5

Dent Documentation, Release 0.1

6 Chapter 1. Render Pipelines

CHAPTER 2

Tutorial: A Shadertoy-like Program

Shadertoy is a website dedicated to shader-only programs. It is well worth checking out what you can do with just a
fragment shader.

Let us write a fragment shader viewer in Dent. We’ll go about it in four short stages.

2.1 Stage 0: Planning

Before diving in, lets plan what we need.

We want to just run a fragment shader. But to render that we need some geometry on which to execute it. We can just
use a rectangle that fills up the whole screen (Dent has us covered here so we don’t have to mess with any vertex data
etc.).

We’ll have a vertex shader that is as simple as can be, and then we can do magic in the fragment shader.

2.2 Stage 1: Getting a Game Running

We can use the dent script dent—init to set up our game. Simply run:

’$ dent-init tutorial

in order to make a minimal game tree.

Lets take a look at what’s been done. We now see a directory called tutorial under which all our code and assets
etc will go.

The entrypoint to our game (ie the file we’ll run) is called tutorial. We don’t need to do any setup before the game
runs, so this file just has a single import statement. Dent is unusual (underdeveloped) in that the game begins when
you import that module. This is earmarked to be changed in the near future.

Every game needs a scene, and we have a dummy one, scenes/MainScene.py:

https://www.shadertoy.com/

Dent Documentation, Release 0.1

from dent.Scene import Scene

class MainScene (Scene) :
pass

The file scenes/__init__ .py does some python and dent housekeeping. It is unimportant at the moment

Running the tutorial file should present you with a blank scene. Mmmm. Progress!

2.3 Stage 2: Writing a Shader

To go much further we are going to need a shader. You can look at the Shaders docs in order to get more detail as
to how shaders are handled in Dent, but for now we will need a vertex shader and a fragment shader. The fragment
shader will eventually hold all your ray-tracing/edge-detecting/awesome drawing code, but to start with can be very
simple.

Make a new directory, shaders/main and in it add fragment . shd:

#version 400
out vecd fragColor;
in vec2 pos;

void main ()
{
fragColor = veci4(
(pos.x + 1) / 2,
(pos.y + 1) / 2,
cos (pos.y * 3 + pos.x * 8) / 2 + 1,
1);

Here we are expecting an input of pos from the vertex shader and will give an output called fragColor. We are
just setting the color to be a set of diagonal stripes (as we shall see).

Then create the vertex shader, vertex . shd. The vertex shader will be getting input from Dent, so its input needs to
be appropriately named. Dent can provide shaders will all manner of inputs: positions, normals, model matrices and
more. However, for this tutorial, we only need the position of the geometry:

#version 400
in vec3 position;
out vec2 pos;

void main ()

{
gl_Position = vecd (position, 1);
pos = position.xy;

Here we have assumed that the position passed to the shader is in screen space: that is, it needs no model matrix nor
view matrix. This will turn out to be a good assumption.

Note, if you are unfamiliar with GLSL, that pos is a variable passed from the vertex shader to the fragment shader and
position is a variable passed to the GPU from the geometry of the object being rendered.

8 Chapter 2. Tutorial: A Shadertoy-like Program

Dent Documentation, Release 0.1

2.4 Stage 3: Using the Shader

To actually use the shader we need geometry. We want a quad that will fill up the entire screen. Thus we will need four
points at positions (-1, -1), (-1, 1), (1, 1) and (1, -1). We will also want two triangles. If you know
about geometry culling, then you will know that these triangles will need to “face” the right way. We’ll then need to
send this geometry to the GPU and bind the correct vertex attributes to the shader.

Or rather, Dent will have to do all of that. Because rendering rectangles is a common task (think minimaps, icons and
text), and that is what engines are for, we will delegate that task to it.

Dent defines a RectangleObject that does just this. By default it creates a square from (-1, -1) to (1, 1)
just as we need. When constructing it, we pass it the name of the shader that it should use to render. Since we put our
earlier shader in shaders/main, this will be the string “main”.

Hence the change to the scene is quite minimal. We also define a display function that is called to refresh the
screen:

from dent.RectangleObjects import RectangleObject

class MainScene (Scene) :
def _ init_ (self):

self.object = RectangleObject ('main')

def display(self, =*xkwargs):
self.object.display ()

All things being well, running the game should give us:

2.4. Stage 3: Using the Shader 9

Dent Documentation, Release 0.1

2.5 Stage the last: Afterword

At this point we can leave the Python (and Dent) code and focus on our shader. As mentioned before, there is a lot one
can do with just a fragment shader. For ideas, check out the Shadertoy gallery.

However, at some point you will probably want to give your shader an image to work with. In GLSL, this is called
a sampler. Using Dent to do this is a little rough at the moment, but simply add the following to the __init___
function of your scene:

def _ init__ (self):

self.texture = dent.Texture.Texture (dent.Texture.COLORMAP)

(continues on next page)

10 Chapter 2. Tutorial: A Shadertoy-like Program

https://www.shadertoy.com/

Dent Documentation, Release 0.1

(continued from previous page)

self.object.shader['colormap'] = dent.Texture.COLORMAP_NUM
self.texture.loadFromImage ('imagefile.png')
self.texture.load()

Then you can use the texture in the shader as a uniform sampler2D called colormap.

2.5. Stage the last: Afterword 11

Dent Documentation, Release 0.1

12 Chapter 2. Tutorial: A Shadertoy-like Program

CHAPTER 3

Shaders

Shader objects in Dent represent complete shader programs: a vertex shader, possibly tesselation shaders and geometry
shader, and a fragment shader. They are written in OpenGL Shader Language, with a small modification.

This guide assumes some knowledge of OpenGL shaders and pipelines. If you are new to all this, it is suggested to
copy one of the shaders from an existing project and tweak it to your needs, or only use the builtin shaders.

Shader type Filename Required

Vertex vertex.shd Yes

Geometry geometry.shd No

Tesselation control tesscontrol.shd | No

Tesselation evaluation | tesseval.shd Only if control shader present
Fragment fragment.shd Yes

A simple vertex shader might look like this:

#version 400
in vec3 position;
out vec2 pos;

uniform mat3 model;

void main ()

{
gl_Position = vec4 ((model x position.xyz), 1);
pos = position.xy/2+0.5;

The corresponding fragment shader might be:

#version 400
in vec2 pos;
out vec4 fragColor;

(continues on next page)

13

Dent Documentation, Release 0.1

(continued from previous page)

uniform sampler2D colormap;

void main ()

{

fragColor = texture(colormap, vec2(pos.x, 1-pos.y));

Note the output of the fragment shader is a vec4. You may output up to three vectors for defered rendering (see Render
Pipelines).

Shaders are stored in the game tree under the folder shaders:

game
my—-awesome—game .py
scenes
|: __init__ .py
MainScene.py
shaders
image
fragment.shd
vertex.shd

A shader object is created easily. For example to create a standard vertex-fragment shader and set some uniforms:

import dent.Shaders

shader = dent.Shaders.getShader ('images')
shader['some uniform'] = 1.4
shader|['some_other_uniform'] = np.arange(l, 4, 0.3)

This corresponds to the shaders/image/ * shader above.

The main function of shaders is the draw method. This loads the shader, sets the relevant uniforms and executes a
glDraw= command. The precice command depends on the type of shader (generic, instanced, or feedback). Thus an
object in the scene typically has a display function of the form:

def display(self):
self.shader['model'] = self.model
self.shader.draw(gl.GL_TRIANGLES, self.renderID)

For more detail, see the API documentation of the api/dent.Shaders.

14 Chapter 3. Shaders

CHAPTER 4

Actions and Animations

Any Object may have a ActionController assigned to it. If so, this action controller will take control if the
object’s position and angle.

You add animations to an action controller through the object, calling add_animation (). The action controller
will at all times select an animation and apply it to the object.

Currently animations must be humanoid with a Hips bone at the root, as the motion of this bone will be used as the
basis of the motion of the object itself.

When an action completes, the action controller will select a new action to apply to the object. This will be chosen
according to some weights. By default the weights of the actions are all equal, but you can override this by supplying
aaction_weight function.

15

Dent Documentation, Release 0.1

16 Chapter 4. Actions and Animations

CHAPTER B

Messaging

Dent runs its events off a messaging system. You can hook into this in order to access system events such as keyboard
input, mouse input and timers. Even more, you can insert messages into the queue. This is the recommended way to
communicate between elements of your game.

Dent also saves a log of the message queue every time your game is run.

If you use messaging for all non-deterministic interactions in your game (random die rolls for example), then Dent
will be able to read a message log as a game replay. This is useful for debugging.

To fire an event, call:

message = dent.messaging.Message ('event_name', ('some', 'data'))
dent .messaging.add_message (message)

Here we have made an event of type event_name and with two data.

To add a handler, simply call:

dent .messaging.add_handler ('event_name', handler_func)

The hander function must expect exactly the data that will be in the event. Thus, in the above case it must take two
parameters. The handler will be called with some and data as the parameters, given the previous message.

Naturally there can be mulitple handlers for the same event from different parts of the system. Thus, for example, a
weapon object and the camera object might define hooks for keyboard input.

5.1 Default Messages

Dent fires off a number of messages that you may write hooks for. They are

17

Dent Documentation, Release 0.1

Message Type Description Arguments

mouse A mouse button has been clicked The mouse button, state and xy coordinates
mouse_motion | The mouse has moved The xy coordinates of the mouse
keyboard A key has been pressed The pressed key character

keyboard_up A key has been released The released key character

timer Fired every timer tick The current number of frames per second
game_start Fired once at the beginning of the game | None

5.2 API

class dent.messaging.Message (message_type, data=())
Bases: object

dent .messaging.add_handler (message_type, handler)

dent .messaging.add_message (message)
Adds a new message to the queue.

dent .messaging.game_start_handler (time)

dent .messaging.load_messages (filename="replay.log’)
Loads all messages in a given file.

dent .messaging.load_replay (filename="replay.log’)
Must be called when the only item on the message queue is begin_game. Loads the message queue from the
given file.

dent .messaging.process_messages ()

dent .messaging.save_messages (filename="replay.log’)
Saves all processed and unprocessed messages to a file.

18 Chapter 5. Messaging

CHAPTER O

Materials

Materials are nothing more than a glorified set of parameters to the rendering software (shader). In theory, the rendering

system is simply:

render (mesh,

material)

where the mesh specifies the geometry, and the material everything else.

In practice, there are a number of different rendering systems and even more model formats that store materials, and as
such, the Material class must cater to all of them. Dent tries to take a “catch-em-all” approach, where each material
has as many parameters as it can, and it is up to the renderer to discard that are not useful.

6.1 Parameters of a Material

If you are writing a shader for the default Dent material system, you can expec to be fed a number of textures and
constants. They are as listed at the bottom of this document, with details. In brief, though, they are:

parameter uniform name type description

diffuse color tint diffuse_tint vec3 a constant by which to multiply the colormap
metallic tint metallic_tint | float a constant by which to multiply the metallic map
roughness tint specular_tint | float a constant by which to multiply the roughness map
color texture colormap sampler2d | the fragment diffuse/albedo value

normal texture normalmap sampler2d | the fragment normal map

specularity texture | specularmap sampler2d | the fragment specularity value

metallic texture metallicmap sampler2d | the fragment metallic value

roughness texture | roughnessmap sampler2d | the fragment roughness value

As you can see, this covers most of the required inputs to Blinn-Phong or Cook-Torrance BDRFs, and so can be used
with the builtin lighting shaders.

19

Dent Documentation, Release 0.1

6.2 Parsing Materials from Models

Importing materials is a pain for two reasons. The first is that, unlike meshes, there’s no consensus on what information
should be stored with an object with regard to its materials. The second is the way that pyassimp deals with this
problem: it doesn’t.

As a result, under the hood, Dent has to do some fancy footwork to guess the right parameters for the material. This
unfortunately may require some work from the artist/developer. The exact specifics of the defaults chosen are detailed
below.

6.3 Parameters

All texture maps described below can be overridden (see Overriding Textures).

6.3.1 Diffuse and Albedo

Most shaders require some sort of colour data. For Phong shaders, this is the diffuse colour. For PBR it is known as
the albedo.

In Dent this data is passed as the diffuse colour tint and the colour texture. The correct way to compute the actual
value is to multiply the two together.

The default for the image is a blank white texture. The default for the colour is the assimp default of all black. The
tint can be specified in any way that is parsed to the COLOR_DIFFUSE property of assimp, and the map in any way
that can be parsed to the first texture in the diffuse stack. As an example, in OBJ material format:

newmtl my_material
Kd 0.640000 0.640000 0.640000
map_Kd color.tga

6.3.2 Normal Maps

Normal maps are also stored as part of materials. They are only stored as textures.

The default texture is a single (0, 0, 1) valued (r, g,b) texture. Any map passed to the first layer of the normal
stack of assimp is valid, as is any map passed to the first layer of the bump map. As an example in OBJ material
format:

newmtl my_material
map_Bump normal.tga.

6.3.3 Phong Specific Parameters

The specularity is a measure of the coefficient of specularity in Blinn-Phong lighting. It is stored as a texture only.
Any map passed to the first layer of the specular stack of assimp is valid. As an example in OBJ material format:

newmtl my_material
map_Ks specular.tga

20 Chapter 6. Materials

Dent Documentation, Release 0.1

6.3.4 PBR Specific Parameters

The parameters of roughness and metallic are specific to PBR shading. They are stored in the roughness texture and
tint, and the metallic texture and tint parameters. Again, the correct value is obtained by multiplying the two.

Currenly the only way to set these textures is to override them. The tints default to 1.

6.4 Overriding Textures

Any of the above textures can be overridden, by placing appropriate image files in the same directory as the model.
The format for the image filename is {material_name}.{suffix}.png, where the {suffix} is given from
the below table

Texture type | Suffix
Diffuse diff
Normal norm
Specular spec
Roughness roug
Metallic meta

6.5 Debugging Materials

You can use the Dent asset inspector to view materials and their properties, once they have been loaded into an asset
datastore. This is useful to study the values for the tints and textures that are actually parsed by Dent. To do this, run
dent—-assets inspect, and navigate to the material in question and hit enter to examine its properties.

6.6 API

6.4. Overriding Textures 21

Dent Documentation, Release 0.1

22

Chapter 6. Materials

CHAPTER /

Textures

7.1 API

23

Dent Documentation, Release 0.1

24

Chapter 7. Textures

Python Module Index

d

dent .messaging, 18

25

Dent Documentation, Release 0.1

26

Python Module Index

Index

A

add_handler () (in module dent.messaging), 18
add_message () (in module dent.messaging), 18

D

dent .messaging (module), 18

G

game_start_handler () (in module
dent.messaging), 18

L

load_messages () (in module dent.messaging), 18
load_replay () (in module dent.messaging), 18

M

Message (class in dent.messaging), 18

P

process_messages () (in module dent.messaging),
18

S

save_messages () (in module dent.messaging), 18

27

	Render Pipelines
	Foreword
	Overview
	Pipelines in Scenes

	Tutorial: A Shadertoy-like Program
	Stage 0: Planning
	Stage 1: Getting a Game Running
	Stage 2: Writing a Shader
	Stage 3: Using the Shader
	Stage the last: Afterword

	Shaders
	Actions and Animations
	Messaging
	Default Messages
	API

	Materials
	Parameters of a Material
	Parsing Materials from Models
	Parameters
	Overriding Textures
	Debugging Materials
	API

	Textures
	API

	Python Module Index
	Index

